首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38010篇
  免费   4284篇
  国内免费   7251篇
化学   32219篇
晶体学   1838篇
力学   2220篇
综合类   326篇
数学   2437篇
物理学   10505篇
  2024年   55篇
  2023年   351篇
  2022年   604篇
  2021年   829篇
  2020年   1186篇
  2019年   1075篇
  2018年   945篇
  2017年   1145篇
  2016年   1599篇
  2015年   1532篇
  2014年   1864篇
  2013年   2961篇
  2012年   3396篇
  2011年   2358篇
  2010年   2016篇
  2009年   2514篇
  2008年   2697篇
  2007年   2786篇
  2006年   2608篇
  2005年   2384篇
  2004年   2356篇
  2003年   1923篇
  2002年   1510篇
  2001年   1023篇
  2000年   1022篇
  1999年   883篇
  1998年   755篇
  1997年   729篇
  1996年   734篇
  1995年   675篇
  1994年   640篇
  1993年   472篇
  1992年   488篇
  1991年   293篇
  1990年   219篇
  1989年   153篇
  1988年   155篇
  1987年   96篇
  1986年   82篇
  1985年   93篇
  1984年   67篇
  1983年   41篇
  1982年   42篇
  1981年   31篇
  1980年   28篇
  1979年   30篇
  1978年   13篇
  1977年   15篇
  1976年   10篇
  1973年   15篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
71.
The ability to control material properties in space and time for functionally graded viscoelastic materials makes them an asset where they can be adapted to different design requirements. The continuous microstructure makes them advantageous over conventional composite materials. Functionally graded porous structures have the added advantage over conventional functionally graded materials of offering a significant weight reduction compared to a minor drop in strength. Functionally graded porous structures of acrylonitrile butadiene styrene (ABS) had been fabricated with a solid‐state constrained foaming process. Correlating the microstructure to material properties requires a deterministic analysis of the cellular structure. This is accomplished by analyzing the scanning electron microscopy images with a locally adaptive image threshold technique based on variational energy minimization. This characterization technique of the cellular morphology is analyst independent and works very well for porous structures. Inferences are drawn from the effect of processing on microstructure and then correlated to creep strain and creep compliance. Creep is strongly correlated to porosity and pore sizes but more associated to the size than to porosity. The results show the potential of controlling the cellular morphology and hence tailoring creep strain/compliance of ABS to some desired values. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 795–803  相似文献   
72.
Specimens of iron-doped indium oxide (In1-xFex)2O3 with x?=?0.015, 0.03, 0.045 and 0.06, amalgamated through a traditional solid-state reaction method followed by H2/air sintering, were characterised using an X-ray diffractometer (XRD), a vibrating sample magnetometer (VSM), and a scanning electron microscope (SEM) to investigate their structural, magnetic and morphological properties respectively. According to XRD plots, all the specimens exhibit cubic bixbyite structures along with ancillary phases. Magnetic assessment showed that In2O3 has a negative susceptibility, exhibiting diamagnetic behaviour at room temperature. The doping of Fe ions induces ferromagnetic (FM) ordering, which is enhanced with increasing doping content. The strength of the magnetisation increases when the specimens are exposed to H2 but is reduced on further air sintering. A bound magnetic polaron (BMP) model is successfully fitted to the observed FM data involving localised carriers and magnetic cations. A multivariate assessment viz. a hierarchical cluster analysis (HCA) was used to corroborate and strengthen the experimental determined magnetic properties. A homogeneous particle distribution was observed in all SEM micrographs and is validated through MATLAB-based simulation by applying a watershed segmentation algorithm. Surface plots also confirm the change in magnetic properties with increase in doping concentration.  相似文献   
73.
A new asymmetric Salamo‐based ligand H2L was synthesized using 3‐tertbutyl‐salicylaldehyde and 6‐methoxy‐2‐[O‐(1‐ethyloxyamide)]‐oxime‐1‐phenol. By adjusting the ratio of the ligand H2L and Cu (II), Co (II), and Ni (II) ions, mononuclear, dinuclear, and trinuclear transition metal (II) complexes, [Cu(L)], [{Co(L)}2], and [{Ni(L)(CH3COO)(CH3CH2OH)}2Ni] with the ligand H2L possessing completely different coordination modes were obtained, respectively. The optical spectra of ligand H2L and its Cu (II), Co (II) and Ni (II) complexes were investigated. The Cu (II) complex is a mononuclear structure, and the Cu (II) atom is tetracoordinated to form a planar quadrilateral structure. The Co (II) complex is dinuclear, and the two Co (II) atoms are pentacoordinated and have coordination geometries of distorted triangular bipyramid. The Ni (II) complex is a trinuclear structure, and the terminal and central Ni (II) atoms are all hexacoordinated, forming distorted octahedral geometries. Furthermore, optical properties including UV–Vis, IR, and fluorescence of the Cu (II), Co (II), and Ni (II) complexes were investigated. Finally, the antibacterial activities of the Cu (II), Co (II), and Ni (II) complexes were explored. According to the experimental results, the inhibitory effect was found to be enhanced with increasing concentrations of the Cu (II), Co (II), and Ni (II) complexes.  相似文献   
74.
Principal eigenvectors of adjacency matrices are often adopted as measures of centrality for a graph or digraph. However, previous principal-eigenvector-like measures for a digraph usually consider only the strongly connected component whose adjacency submatrix has the largest eigenvalue. In this paper, for each and every strongly connected component in a digraph, we add weights to diagonal elements of its member nodes in the adjacency matrix such that the modified matrix will have the new unique largest eigenvalue and corresponding principal eigenvectors. Consequently, we use the new principal eigenvectors of the modified matrices, based on different strongly connected components, not only to compose centrality measures but also to identify bowtie structures for a digraph.  相似文献   
75.
Ligands with 1,1′-bis(donor)ferrocene motif are capable of a wide range of binding modes, including the trans chelation mode in which there is a Fe−M interaction (κ3-D,Fe,D), in the form of a dative Fe→TM bond (TM=transition metal). This Minireview will explore the nature of this Fe–TM interaction thorough select examples as well as how to characterize a Fe→TM dative bond using physical, computational, and spectroscopic techniques.  相似文献   
76.
Silver-mediated α-dC–Ag+–β-dC hybrid base pairs decorated with 5-iodo- or 5-octadiynyl residues are well accommodated in duplex DNA. A strong Tm increase and favorable thermodynamic data for duplex DNA were observed after addition of silver ions. The phenomenon is particularly obvious when both nucleobases of the base pairs are functionalized. Neither the position of the base pair, nor the type of 5-substituent had a negative influence. On the contrary, functionalization of conventional silver-mediated β-dC–Ag+–β-dC homo base pairs showed a negative impact induced by the bulky substituents. To this end, cytosine modified 12-mer oligodeoxynucleotides were prepared by solid-phase synthesis employing new α-anomeric 2′-deoxycytidine phosphoramidites. A multigram scale synthesis was developed for 5-iodo-α-d -2′-deoxycytidine ( 1 ) employing the direct glycosylation of cytosine with Hoffer's α-d -halogenose followed by separation of anomeric DMT nucleosides. Regarding base-pair stability and functionalization silver-mediated α/β-dC hybrid base pairs were found to be superior to β/β-dC homo pairs. According to their extraordinary properties, they might find applications in DNA diagnostics, material science, or nanotechnology.  相似文献   
77.
Using first-principle calculations, mechanical properties, electronic structure, and Raman spectra of LiB6Si structure were investigated. The band structures calculated by GGA-PBE and HSE06 methods reveal that LiB6Si is an indirect band gap semiconductor. The band gap estimated by HSE06 method is about 2.24 eV, which is in good agreement with that of experimental value 2.27 eV. The calculated tensile stress-strain curves of LiB6Si reveal that [010] direction is the cleavage direction under tensile strains. The calculated Raman spectra of LiB6Si are also in good agreement with that of measured. The position of the band gap may provide a basis for further photocatalysis research on LiB6Si.  相似文献   
78.
Large cable net structures have been widely applied in aerospace engineering due to the feature of light-weight, high packaging efficiency, and high thermal stability. Structural vibrations induced by a variety of disturbances are inevitable in the space environment, resulting in the requirement of effective vibration control strategies for large cable net structures. Since the large cable net structures have many closely spaced vibrational modes in the range of low frequencies, traditional modal based control may cause modal truncation and spillover problems. In this paper, a wave-based boundary control strategy is adopted and its effectiveness to control the vibration of cable net structures is investigated, by transfer function analysis and numerical methods. It is found that the structural vibration can be absolutely resisted by applying the wave-based boundary controllers onto all the exterior nodes, when disturbances come from the external boundaries of the cable net. Our results in this paper can provide a theoretical basis for the vibration control of large cable net structures.  相似文献   
79.
In this paper, we present an approach of dynamic mesh adaptation for simulating complex 3‐dimensional incompressible moving‐boundary flows by immersed boundary methods. Tetrahedral meshes are adapted by a hierarchical refining/coarsening algorithm. Regular refinement is accomplished by dividing 1 tetrahedron into 8 subcells, and irregular refinement is only for eliminating the hanging points. Merging the 8 subcells obtained by regular refinement, the mesh is coarsened. With hierarchical refining/coarsening, mesh adaptivity can be achieved by adjusting the mesh only 1 time for each adaptation period. The level difference between 2 neighboring cells never exceeds 1, and the geometrical quality of mesh does not degrade as the level of adaptive mesh increases. A predictor‐corrector scheme is introduced to eliminate the phase lag between adapted mesh and unsteady solution. The error caused by each solution transferring from the old mesh to the new adapted one is small because most of the nodes on the 2 meshes are coincident. An immersed boundary method named local domain‐free discretization is employed to solve the flow equations. Several numerical experiments have been conducted for 3‐dimensional incompressible moving‐boundary flows. By using the present approach, the number of mesh nodes is reduced greatly while the accuracy of solution can be preserved.  相似文献   
80.
Abstract

In this study, the photovoltaic organic-inorganic structures were created by deposition of poly(3,4-ethylenedioxythiophene) film doped by poly(styrenesulfonate) and reduced graphene oxide on the porous silicon/silicon substrate. Formation of the hybrid structure was confirmed by means of atomic-force microscopy and Fourier transform infrared spectroscopy. The current-voltage characteristics of the obtained structures were studied. It was found the increase of electrical conductivity and photo-induced signal in organic-inorganic structures. Temporal parameters and spectral characteristics of photoresponse in the 400–1100?nm wavelength range were investigated. The widening of spectral photosensitivity in a short-wavelength range due to light absorption in various layers of the multijunction structure in comparison with single crystal silicon was revealed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号